3.7.70 \(\int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {-2+3 \sec (c+d x)}} \, dx\) [670]

Optimal. Leaf size=109 \[ \frac {3 \sqrt {3-2 \cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |-4\right ) \sqrt {\sec (c+d x)}}{d \sqrt {-2+3 \sec (c+d x)}}-\frac {E\left (\left .\frac {1}{2} (c+d x)\right |-4\right ) \sqrt {-2+3 \sec (c+d x)}}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}} \]

[Out]

3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2*I)*(3-2*cos(d*x+c))^(1/2)*sec
(d*x+c)^(1/2)/d/(-2+3*sec(d*x+c))^(1/2)-(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+
1/2*c),2*I)*(-2+3*sec(d*x+c))^(1/2)/d/(3-2*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3947, 3941, 2732, 3943, 2740} \begin {gather*} \frac {3 \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |-4\right )}{d \sqrt {3 \sec (c+d x)-2}}-\frac {\sqrt {3 \sec (c+d x)-2} E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Sec[c + d*x]]*Sqrt[-2 + 3*Sec[c + d*x]]),x]

[Out]

(3*Sqrt[3 - 2*Cos[c + d*x]]*EllipticF[(c + d*x)/2, -4]*Sqrt[Sec[c + d*x]])/(d*Sqrt[-2 + 3*Sec[c + d*x]]) - (El
lipticE[(c + d*x)/2, -4]*Sqrt[-2 + 3*Sec[c + d*x]])/(d*Sqrt[3 - 2*Cos[c + d*x]]*Sqrt[Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3947

Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[1/a,
 Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[b/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b
*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {-2+3 \sec (c+d x)}} \, dx &=-\left (\frac {1}{2} \int \frac {\sqrt {-2+3 \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\right )+\frac {3}{2} \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {-2+3 \sec (c+d x)}} \, dx\\ &=\frac {\left (3 \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {3-2 \cos (c+d x)}} \, dx}{2 \sqrt {-2+3 \sec (c+d x)}}-\frac {\sqrt {-2+3 \sec (c+d x)} \int \sqrt {3-2 \cos (c+d x)} \, dx}{2 \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {3 \sqrt {3-2 \cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |-4\right ) \sqrt {\sec (c+d x)}}{d \sqrt {-2+3 \sec (c+d x)}}-\frac {E\left (\left .\frac {1}{2} (c+d x)\right |-4\right ) \sqrt {-2+3 \sec (c+d x)}}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.08, size = 68, normalized size = 0.62 \begin {gather*} -\frac {\sqrt {3-2 \cos (c+d x)} \left (E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )-3 F\left (\left .\frac {1}{2} (c+d x)\right |-4\right )\right ) \sqrt {\sec (c+d x)}}{d \sqrt {-2+3 \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Sec[c + d*x]]*Sqrt[-2 + 3*Sec[c + d*x]]),x]

[Out]

-((Sqrt[3 - 2*Cos[c + d*x]]*(EllipticE[(c + d*x)/2, -4] - 3*EllipticF[(c + d*x)/2, -4])*Sqrt[Sec[c + d*x]])/(d
*Sqrt[-2 + 3*Sec[c + d*x]]))

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 373 vs. \(2 (147 ) = 294\).
time = 1.14, size = 374, normalized size = 3.43

method result size
default \(-\frac {\left (2 i \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, \sqrt {5}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \left (2 \cos \left (d x +c \right )-3\right )}{1+\cos \left (d x +c \right )}}+i \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, \sqrt {5}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \left (2 \cos \left (d x +c \right )-3\right )}{1+\cos \left (d x +c \right )}}+2 i \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, \sqrt {5}\right ) \sqrt {2}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \left (2 \cos \left (d x +c \right )-3\right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+i \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, \sqrt {5}\right ) \sqrt {2}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \left (2 \cos \left (d x +c \right )-3\right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-4 \left (\cos ^{2}\left (d x +c \right )\right )+10 \cos \left (d x +c \right )-6\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )-3}{\cos \left (d x +c \right )}}}{2 d \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \left (2 \cos \left (d x +c \right )-3\right )}\) \(374\)
risch \(-\frac {i \left ({\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1\right ) \sqrt {2}}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {-\frac {2 \left ({\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1\right )}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {i \left (\frac {-2 \,{\mathrm e}^{2 i \left (d x +c \right )}+6 \,{\mathrm e}^{i \left (d x +c \right )}-2}{\sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (-2 \,{\mathrm e}^{2 i \left (d x +c \right )}+6 \,{\mathrm e}^{i \left (d x +c \right )}-2\right )}}+\frac {2 \left (\frac {\sqrt {5}}{2}-\frac {3}{2}\right ) \sqrt {-\frac {{\mathrm e}^{i \left (d x +c \right )}-\frac {3}{2}+\frac {\sqrt {5}}{2}}{\frac {3}{2}-\frac {\sqrt {5}}{2}}}\, \sqrt {-5 \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {3}{2}-\frac {\sqrt {5}}{2}\right ) \sqrt {5}}\, \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{\frac {3}{2}-\frac {\sqrt {5}}{2}}}\, \left (-\sqrt {5}\, \EllipticE \left (\sqrt {-\frac {{\mathrm e}^{i \left (d x +c \right )}-\frac {3}{2}+\frac {\sqrt {5}}{2}}{\frac {3}{2}-\frac {\sqrt {5}}{2}}}, \frac {i \sqrt {5}\, \sqrt {\left (\frac {3}{2}-\frac {\sqrt {5}}{2}\right ) \sqrt {5}}}{5}\right )+\left (\frac {3}{2}+\frac {\sqrt {5}}{2}\right ) \EllipticF \left (\sqrt {-\frac {{\mathrm e}^{i \left (d x +c \right )}-\frac {3}{2}+\frac {\sqrt {5}}{2}}{\frac {3}{2}-\frac {\sqrt {5}}{2}}}, \frac {i \sqrt {5}\, \sqrt {\left (\frac {3}{2}-\frac {\sqrt {5}}{2}\right ) \sqrt {5}}}{5}\right )\right )}{5 \sqrt {-2 \,{\mathrm e}^{3 i \left (d x +c \right )}+6 \,{\mathrm e}^{2 i \left (d x +c \right )}-2 \,{\mathrm e}^{i \left (d x +c \right )}}}\right ) \sqrt {2}\, \sqrt {-2 \,{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1\right )}}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {-\frac {2 \left ({\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1\right )}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(551\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(1/2)/(-2+3*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(2*I*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),5^(1/2))*cos(d*x+c)*sin(d*x+c)*2^(1/2)*(1/(1+cos(d*x+c)))^(
1/2)*(-2*(2*cos(d*x+c)-3)/(1+cos(d*x+c)))^(1/2)+I*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),5^(1/2))*cos(d*x+c)*s
in(d*x+c)*2^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*(-2*(2*cos(d*x+c)-3)/(1+cos(d*x+c)))^(1/2)+2*I*EllipticF(I*(-1+cos(
d*x+c))/sin(d*x+c),5^(1/2))*2^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*(-2*(2*cos(d*x+c)-3)/(1+cos(d*x+c)))^(1/2)*sin(d*
x+c)+I*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),5^(1/2))*2^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*(-2*(2*cos(d*x+c)-3)/(
1+cos(d*x+c)))^(1/2)*sin(d*x+c)-4*cos(d*x+c)^2+10*cos(d*x+c)-6)*(-(2*cos(d*x+c)-3)/cos(d*x+c))^(1/2)/(1/cos(d*
x+c))^(1/2)/sin(d*x+c)/(2*cos(d*x+c)-3)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(-2+3*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(3*sec(d*x + c) - 2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.55, size = 92, normalized size = 0.84 \begin {gather*} -\frac {{\rm weierstrassPInverse}\left (8, 4, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right ) - 1\right ) + {\rm weierstrassPInverse}\left (8, 4, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right ) - 1\right ) - {\rm weierstrassZeta}\left (8, 4, {\rm weierstrassPInverse}\left (8, 4, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right ) - 1\right )\right ) - {\rm weierstrassZeta}\left (8, 4, {\rm weierstrassPInverse}\left (8, 4, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right ) - 1\right )\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(-2+3*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-(weierstrassPInverse(8, 4, cos(d*x + c) + I*sin(d*x + c) - 1) + weierstrassPInverse(8, 4, cos(d*x + c) - I*si
n(d*x + c) - 1) - weierstrassZeta(8, 4, weierstrassPInverse(8, 4, cos(d*x + c) + I*sin(d*x + c) - 1)) - weiers
trassZeta(8, 4, weierstrassPInverse(8, 4, cos(d*x + c) - I*sin(d*x + c) - 1)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {3 \sec {\left (c + d x \right )} - 2} \sqrt {\sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(1/2)/(-2+3*sec(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(3*sec(c + d*x) - 2)*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(-2+3*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(3*sec(d*x + c) - 2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {\frac {3}{\cos \left (c+d\,x\right )}-2}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((3/cos(c + d*x) - 2)^(1/2)*(1/cos(c + d*x))^(1/2)),x)

[Out]

int(1/((3/cos(c + d*x) - 2)^(1/2)*(1/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________